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U
nsupervised sig-
nal processing 
has been an excit-
ing theme of 
research for at 

least three decades. It finds the 
potential application in practi-
cally all fields where well-estab-
lished techniques of digital 
signal processing have been 
employed, including telecom-
munications; speech and audio 
processing; image, radar, and 
sonar; and biomedical signals. 
Among these classical prob-
lems, geophysical signal pro-
cessing has played a prominent role in the development of 
unsupervised methods. In fact, the field of unsupervised process-
ing can be said to have started with the early application of 
Wiener’s theories to seismology.

Wiener filters involve second-order statistics (SOS), specifical-
ly correlation and power spectrum density, and are built over the 
theoretical framework of linear systems and Gaussian signals. In 
contrast, unsupervised filtering uses higher-order statistics 
(HOS), enabling the weakening of classical assumptions about 
the systems and signals under study. Thus, in the last few years, 

there has been an increasing 
interest in moving from corre-
lation-based methods to unsu-
pervised techniques in seismic 
signal processing.

This article reviews some 
key aspects of two important 
branches in unsupervised sig-
nal processing: blind deconvo-
lution and blind source 
separation (BSS). It also gives 
an overview of their potential 
application in seismic process-
ing, with an emphasis on seis-
mic deconvolution. Finally, it 
presents illustrative results of 

the application, on both synthetic and real data, of a method for 
seismic deconvolution that combines techniques of blind decon-
volution and blind source separation. Our implementation of this 
method contains some improvements over the original method in 
the literature described in [1].

INTRODUCTION
Reflection seismic plays a fundamental role in deriving informa-
tion on the subsurface of an area under analysis. To achieve this, 
seismic waves are produced from sources such as dynamite or air-
guns. These waves are reflected on the subsurface, and sensor 
grids located in the surface measure the reflections. These mea-
surements then undergo intense processing, involving significant 
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human and computational effort. The goal is to provide informa-
tion on the subsurface to applications such as imaging and param-
eter estimation of geological structures that are relevant to 
exploration and monitoring of hydrocarbon reservoirs, assessing 
sites for CO2 sequestration and nuclear waste deposition.

From a signal processing perspective, establishing the connec-
tion between the signal sources and the sensors is a fundamental 
and often challenging problem for two main reasons. First, the 
seismic source and the subsurface propagation are not ideal, 
which distorts the useful signals. Second, the output is a mixture 
of different waves, which must be identified and separated. In 
many cases, a suitable hypothesis consists in considering linear 
distortions and mixtures. Thus, a convolution relationship models 
the fact that the source signal and the propagation environment 
are not ideal, akin to a transmission through a linear channel, 
while the mixing process consists of a linear combination of the 
waves. To recover the useful information, channel deconvolution 
and source separation can be performed by different methods [2].

A fundamental question comes before the choice of a deconvo-
lution/separation method: In addition to the measured data, what 
information is available on the input sources and the convolution/
mixing system? In fact, if one of them is known or well estimated, 
the processing task is rather simplified and classical inversion 
methods, as the ones described in [3], can be used. In the litera-
ture of statistical signal processing, these are also referred to as 
supervised methods.

However, the use of supervised techniques may not be possible 
if the information on the input sources or the convolutive/mixing 
system is unavailable, or its estimation is undesirable. In any case, 
the lack of information requires the use of unsupervised, or blind, 

signal processing, which is the subject of this article. In the follow-
ing, we describe unsupervised techniques and their application to 
seismic processing.

SEISMIC DECONVOLUTION
In reflection seismic data processing, deconvolution is used to 
estimate, from the measured data, the reflectivity function of 
the subsurface, which is the earth response to an ideal impul-
sive, seismic source. Mathematically, the measured samples, 
x(n), are assumed to be the convolution of the reflectivity func-
tion, r(n), with the source signature, h(n). With the addition of 
a noise term, b(n), the seismic trace is given by x(n) 5 h(n) * 
r(n) 1 b(n), as shown in Figure 1. In some cases, such as in 
marine seismic exploration and vibroseis-based land explora-
tion, the source signature can be estimated [4]. Under some 
conditions this information can be used to deconvolve the seis-
mic trace in a supervised fashion, which is often referred to as 
deterministic deconvolution in seismology [4], [5]. It is relative-
ly straightforward to develop both time-domain and frequency-
domain techniques to perform supervised deconvolution. A 
common approach is to estimate the reflectivity function 
through linear filtering, using the Wiener-Levinson minimiza-
tion of the mean-squared-error (MSE)[3]. 

When the source signature is not available, the estimation of 
the reflectivity function becomes an unsupervised task, which 
must be carried out based only on the observed samples and on a 
minimum amount of hypothesis about the source and the  system. 
However, even in the absence of noise, this is an ill-posed problem, 
because multiple combinations of source signatures and reflectivi-
ties can result in the same seismic trace. The challenge is to 
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[FIG1] The properties of the subsoil layers, density and seismic velocity, determine their acoustic impedance. It is possible to calculate a 
reflectivity function of the geological section by considering the change of these properties at the boundaries between layers. In the 
convolutional model, the observed trace is the reflectivity function convolved with the source signature and corrupted by a random 
additive noise.
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 overcome this ambiguity by exploiting prior 
knowledge about the structure of the source 
signature and the reflectivity.

PREDICTIVE DECONVOLUTION
Interestingly, one of the first applications of 
unsupervised signal processing was in seismic 
deconvolution. This application was proposed in 
1954 by Enders A. Robinson in his Ph.D. disser-
tation [6], in which he showed that the recently 
developed Wiener theory on prediction and fil-
tering [7] could be used for predictive, unsuper-
vised deconvolution. Robinson considered the 
following two ad hoc hypotheses [8]: 

1) the seismic wavelet is the impulse 
response of an all-pole, minimum phase 
system 
2) the impulse response of the layered 
earth model behaves like a decorrelated 
(white) signal, so that it has a flat frequency 
spectrum. 
In other words, the observed signal can be modeled as an 

autoregressive process, so that the model parameters and the 
impulse response can be estimated by linear prediction [2].

Deconvolution employing prediction-error filters was quite 
appealing, since it uses only the SOS (correlation) of the measured 
signal, which simplifies the task significantly. However, the sound-
ness of second-order methods is limited by the effectiveness of the 
underlying hypotheses. First, a prediction-error filter acts as a 
whitening filter, so that ideally it recovers an uncorrelated signal. 
In other words, if the signal to be recovered is correlated, a predic-
tion-error filter necessarily introduces residual distortions. 
Second, and perhaps most importantly, if the seismic wavelet can-
not be modeled as an all-pole, minimum phase filter, the predic-
tion-error filter is still ideally able to recover a white reflectivity, 
but different from the actual one.

Figure 2 illustrates the fundamental limitation of linear predic-
tive deconvolution by considering a white source to be recovered 
and two convolution systems whose frequency responses have the 
same magnitude but different phases. Since predictive deconvolu-
tion is based only on SOS, it does not succeed in recovering the 
input of the nonminimum phase system. In this scenario, the 
minimization of the mean squared prediction error leads to the 
same prediction coefficients for both systems. Nevertheless, only 
the signal recovered from a minimum-phase system corresponds 
to the original source. This, in fact, is a well-known limitation of 
SOS: the power spectrum density of the input and output signals 
of a linear time-invariant system are related by the magnitude of 
the frequency response of the system, and these quantities do not 
carry any phase information [2], [3].

FUNDAMENTAL THEOREMS
To overcome the limitations of predictive deconvolution, unsuper-
vised techniques must go beyond correlation and power spectrum 
density and must instead deal with HOS. The benefits of HOS, 

such as their ability to recover inputs of nonminimum phase sys-
tems, are established by the two following results. 

The Benveniste-Goursat-Ruget (BGR) theorem [9] considers a 
scenario in which a source signal, s(n), composed of non-Gaussian 
independent and identically distributed (i.i.d.) samples is observed 
through a noiseless, linear time-invariant convolution system with 
output x(n). An estimate of the source, y(n), must be obtained 
from x(n) and the knowledge of the probability density function 
(pdf) of s(n). Under these conditions, the theorem states that, if 
the pdfs of y(n) and s(n) are the same, then correct estimation is 
attained, except for a delay, d, and a complex unit-magnitude gain, 
a, i.e., y(n) 5 as(n – d).

This result is crucial, since it establishes the viability of obtain-
ing an efficient deconvolution filter, with the sole aid of statistical 
properties of the source, and without any additional assumption 
about the input signal or the system impulse response. However, it 
does require more than simply working with SOS, since the recov-
ery involves the pdfs of the signals. 

The BGR theorem was the first solid theoretical justification 
for unsupervised deconvolution. However, a decade later, another 
important result demonstrated that the condition of matching 
pdfs of this theorem was excessively stringent. 

The Shalvi-Weinstein (SW) theorem [10] considers the same 
scenario of the BGR theorem but shows if E{s(n)2} 5 E{y(n)2} and 
a nonzero cumulant of an order higher than two of s(n) and y(n) 
are equal, then the recovered signal y(n) corresponds to a delayed 
and possibly scaled version of the transmitted signal s(n). 
Intuitively, this means that, after a sort of power  normalization, an 
HOS can be used to find an effective deconvolution filter.

The importance of the SW theorem is notorious, since it 
assures that it is not necessary to match the pdfs, and hence 
match all the moments, of the two signals of interest to accom-
plish blind deconvolution: it suffices to take into account the 
 second-order moment and, for instance, the fourth-order 

Ss(ω) Sx(ω) Sy(ω)

x1(n)s(n)

n

x2(n)

y2(n)

y1(n)

n

n

ω ωω

[FIG2] The white input signal s(n) feeds a minimum-phase all-poles system and a 
maximum-phase all-zero systems both with the same magnitude response. Thus, the 
output signals x1(n) and x2(n) have the same power spectrum density Sx(w). The 
minimization of the prediction mean squared error leads to the same prediction-error 
filter for both x1(n) and x2(n). However, in the first case the prediction-error filter 
exactly corresponds to the inverse of the minimum-phase all-poles system, while it 
compensates only the magnitude distortions in the second case. Hence y1(n) and 
y2(n) are both decorrelated signals but only y1(n) recovers the original source s(n).
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 information in the kurtosis, provided it is nonzero. An illustrative 
example of application of HOS in geophysics can be found in [11].

BLIND SOURCE SEPARATION
BSS is another fundamental topic of unsupervised processing theo-
ry [2]. Similar to blind deconvolution, BSS assumes only some sta-
tistical knowledge about sources and system. However, in BSS, the 
system has multiple inputs and multiple outputs. The problem can 
be stated as follows: at sample time n, a set of N signals of interest, 
s(n) 5 [s1(n) s2(n) … sN(n)]T, is generated by the sources, and 
observed through an environment that mixes them. The mixtures 
are captured by a set of M sensors, providing the observed signals 
x(n) 5 [x1(n) x2(n) … xM(n)]T. The goal of source separation algo-
rithms is to estimate all source signals based only on the observa-
tions, by means, for instance, of a separating system. If the mixing 
system is linear, memoryless, and time-invariant, it can be described 
by an M × N matrix A. In this case, if the number of sources and 
sensors is equal and the mixing matrix is nonsingular, the sources 
can be recovered by a matrix W, which represents the inverse of A. 
The question is how to compute W based only on the observations 
and some statistical knowledge of the sources and system.

A first idea to adjust W relies on SOS, i.e., W is adjusted so 
as to decorrelate the recovered signals y(n) 5 [y1(n) y2(n) … 
yM(n)]T. This procedure is usually called whitening and is in a 
way similar to the predictive approach of unsupervised decon-
volution. The whitening procedure can be performed by a clas-
sical data analysis technique called principal component 
analysis (PCA) [2]. However, it cannot guarantee a proper sep-
aration as shown in the following example.

Figure 3 depicts a case in which two mutually independent 
sources, each with a uniform distribution, are mixed by a linear 
instantaneous mixture. The top separating system consists of a 
whitener, and is based only on SOS. As can be observed from the 
scatter plot of its output, this system does not recover the original 
sources. In fact, there remains a rotation factor, which cannot be 

inferred from SOS. The solution to this 
problem, based on HOS, and usually 
referred to as BSS, will be discussed in the 
following.

The seminal work in [13] proposed the 
first effectively BSS technique by adjusting 
the separating matrix W. This is the essence 
of the Hérault-Jutten algorithm, which 
produces a set of signals y(n) that are non-
linearly uncorrelated, rather than just 
uncorrelated. The use of nonlinear devices 
results in an implicit use of HOS, which 
explains the good performance of the algo-
rithm. Since it was the first BSS method to 
use HOS, and due to its efficiency, the 
Hérault-Jutten algorithm was a major 
breakthrough in BSS.

The need for HOS in the BSS problem 
was definitively clarified by the introduc-
tion of the concept of independent compo-

nent analysis (ICA), first formalized by Comon in [14]. In contrast 
with the whitening approach, the main idea in ICA is to adjust the 
matrix W so that the recovered signals become mutually indepen-
dent. If there is at most one Guassian source and the mixing 
matrix A is invertible, then ICA will separate the source signals 
[14], as shown in Figure 3. In other words, under some assump-
tions, recovering independent signals implies source separation.

It is noteworthy that, although blind deconvolution and source 
separation approaches have originated independently and in 
somewhat distinct scientific communities, strong relationships 
can be found between these two unsupervised problems. In both 
cases, dealing with SOS is not sufficient and leads only to whiten-
ing. Also, both solutions present ambiguities: while blind deconvo-
lution cannot determine a scaling factor and a delay, BSS is 
constrained by scaling and permutation ambiguities. The latter 
means that, even though the sources can be recovered, their order 
cannot be determined.

Among the wide range of unsupervised processing techniques 
that can be applied to geophysical signals, this article is more 
focused on deconvolution, so that we present now only a brief 
comment about two distinct applications where the use of BSS is 
quite interesting:

MULTIPLE ATTENUATION USING BSS
In general, several seismic processing techniques rely on the 
assumption that the signals in the seismic data contain only pri-
mary reflections, that is, measurements of seismic waves that were 
reflected only once. In practice, however, the seismic records may 
contain readings on waves that suffered multiple reflections on the 
path between the seismic source and receiver. This may happen, 
for instance, in marine records when a wave reflects on the sea 
bottom, then on the surface, then on the bottom again before 
reaching the receiver. These multiple reflections, simply called 
multiples, may interfere with the primaries, obscuring them. Also, 
most seismic signal processing techniques will treat multiples as 
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not recover the source. By using HOS in the second case, one can perfectly recover s.



IEEE SIGNAL PROCESSING MAGAZINE   [31]   JULY 2012

primaries, leading to images that do not reflect the actual subsur-
face geology. Thus, multiple attenuation is an important part of 
seismic signal processing.

One important class of multiple attenuation algorithms oper-
ates in two stages [15]. First, the multiples are predicted [16], [17] 
and, then, these predicted multiples are somehow subtracted from 
the seismic data [18]. However, the success of these methods 
greatly depends on the quality of the predicted multiples. To 
improve the quality of multiple subtraction, several works have 
applied BSS techniques to multiple attenuation. In this case, pri-
mary and multiple reflections are considered different signal 
sources to be separated. For further details, the reader is referred 
to [19]–[22].

WAVE SEPARATION
Wave separation is another seismic processing problem that may 
benefit from BSS. This problem arises because a seismogram is 
composed of different sorts of waves, such as ground roll, direct 
waves, and noise. Thus, a fundamental task in seismic processing 
is the separation of these different types of seismic waves, leading 
to the extraction or the enhancement of the information of inter-
est. This problem is another clear example of unsupervised task, 
since only a few properties of the desired waves are taken into 
account during the recovery process. Among the different strate-
gies to perform wave separation, much attention has been given to 
methods based on the singular value decomposition (SVD). 

SVD is an ubiquitous tool in all branches of signal processing 
and data analysis and can also be used in a seismogram decompo-
sition. In the seismic literature [23], [24], such decomposition 
gives rise to an eigenimage, obtained from the left singular vectors 
and the right singular vectors, which are referred as to propaga-
tion vectors and normalized wavelets, respectively, since they give 
the time and amplitude dependence of each eigenimage. One of 
the most emblematic examples of SVD application in this context 
can be found in [25], in which the authors consider the problem of 
separating the downgoing and upgoing wavefields in vertical seis-
mic profiling (VSP) interpretation. Besides, SVD has been used in 
other applications, such as ground roll attenuation [26] and sig-
nal-to-noise ratio (SNR) enhancement [27].

The application of SVD to wave separation is particularly useful 
to isolate laterally aligned events, e.g., a horizontal event in a sim-
ulated zero-offset section. This approach is closely related to PCA. 
In [24], an alternative approach based on ICA is proposed. By 
searching for independent (instead of orthogonal) vectors, the 
method proposed in [24] presents better results when dealing, for 
instance, with dipping events mixed with horizontal events.

ICA-BASED SEISMIC DECONVOLUTION
In this section, a particular application of unsupervised seismic 
processing is studied in more detail: the banded ICA (B-ICA), 
introduced in [1]. We focus on this method because it combines 
the two problems addressed so far in this article: blind deconvolu-
tion and BSS. To fit the ICA framework, B-ICA models the convo-
lution as a linear system of equations, x 5 As. In this 
formulation, x 5 [x(0) x(1) … x(N – 1)]T and s 5 [r(0) r(1) … 

r(N – 1)]T represent the trace and the reflectivity, respectively. 
The (N 3 N) convolution matrix, A, has a banded Toeplitz struc-
ture whose nonzero elements correspond to the wavelet coeffi-
cients, and can be written as

A 5 G h 10 2 0 c 0 0 c 0
h 11 2 h 10 2 c 0 0 # 0

( h 11 2 f ( ( f 0
h 1Nh21 2 ( f h 10 2 0 f 0

( h 1Nh21 2 f h 11 2 h 10 2 f (
0 ( f ( ( f 0
0 0 ch 1Nh21 2 h 1Nh22 2 ch 10 2

W,

 5 3N1 h N2 h c NN h 4,
where h 5 [h(0) h(1) … h(Nh – 1)] corresponds to the seismic 
wavelet with Nh samples, and Ni corresponds to a zero padding 
matrix that maps h to the column ai of A. Now, the model x 5 As 
only provides a single snapshot of the mixture vector x, which is 
not suited for ICA. To cope with this issue, delayed versions of the 
trace and the reflectivity are defined as s(n)5[r(n – N 1 1) … 
r(n – 1) r(n)]T and x(n) 5 [x(n – N 1 1) … x(n – 1) x(n)]T in 
which x(n) 5 0 and r(n) 5 0 for n , 0. This process generates N 
snapshots s(n) and x(n), for n 5 0 … N – 1. This way, each 
source and mixture corresponds to a delayed version of the reflec-
tivity and the convolved signal respectively. Note that ICA 
requires that the source consists of sequences of non-Gaussian, 
i.i.d., variables [2], which we assume to be satisfied by the reflec-
tivity. Based on this model, the following steps are taken to per-
form the ICA-based seismic deconvolution [1]:

STEP 1–DATA REARRANGEMENT
M , N mixtures are obtained such that x(n) 5 [x(n – M 5 1) … 
x(n – 1) x(n)]T and s(n) 5 [s(n – M 1 1) … s(n – 1) s(n)]T. In 
this case, the linear relationship between x(n) and s(n) is only 
approximated and the observation matrix is written as

 X 5 ≥ xT 1n2M 1 1 2
(

xT 1n21 2
xT 1n 2 ¥

5 ≥ 0 0 c 0 x 10 2 c x 1N2M 2
( ( a a ( a (
0 x 10 2 c c x 1M22 2 c x 1N22 2

x 10 2 x 11 2 c c x 1M21 2 c x 1N21 2 ¥ .

The first rows of the new data matrix have fewer zeros than in 
the full data matrix. As discussed in [1], this improves the statisti-
cal properties of the mixture matrix, which improves the perfor-
mance of the ICA algorithm. 

STEP 2–DATA WHITENING
A whitening processing is used to both decorrelate the signals and 
equalize their power. The whitening matrix, WSOS, is calculated 
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with the use of second-order statistics [2], such that a new set of 
mixtures z(n) 5 WSOS x(n) is produced and E{z(n)zT(n)} 5 I, in 
which I is an M 3 M identity matrix. 

STEP 3–DIMENSION REDUCTION
A linear transformation is carried out over z(n) such that a new 
set of Nh mixtures, x| 1n 2 5 Nk

T Wsos
T z 1n 2  is obtained. As Nk is the 

matrix that maps the wavelet h to the kth column of the convo-
lution matrix A, this step reinforces the banded structure of the 
mixing matrix.

STEP 4–ICA
An ICA algorithm, such the ones described in [2], is applied on 
x| 1n2 . A separating Nh × Nh matrix, W|HOS, is calculated such 
that a set of independent estimated sources y| 1n2 5 W|HOS x| 1n2  
is obtained. It is important to notice that x| 1n2  is not necessar-
ily whitened. Therefore, W|HOS can be calculated by W|HOS 5 
Q|W|SOS, where Q|  is an orthonormal rotation matrix given by 
many ICA procedures, and W|SOS is calculated over x| 1n2 , simi-
larly to Step 2.

STEP 5–WAVELET AND REFLECTIVITY ESTIMATION
Among the estimated sources, y|i 1n2 5 h|T

i x| 1n2 , there is one such 
that y|i 1n2  is proportional to the original reflectivity, s(n), and that 
the corresponding row, h| i, of W|HOS approximates the wavelet. 
Given the knowledge of the matrix Nk chosen in Step 3, the opti-
mal 1y* 1n 2 , h|*2  pair is chosen such that i* 5 arg mini1minci

7xk 2 ci 1h|i * y
&

i 2 7 2 2 ,  in which xk 5 3x 1k 2 N 2  x 1k 2

N 1 1 2 c x 1k 2 1 2 4 T, where x(n) 5 0 for n , 0, and y|i 5 3 y|i 10 2
y|i 11 2 cy|i 1N 2 12], as described in [1]. 

We now present some results of the application of B-ICA to 
seismic deconvolution. We begin with synthetic data. A noiseless 
synthetic trace is shown in Figure 4(a) and is generated by con-
volving a synthetic reflectivity function, which is formed by the 
random spike train shown in Figure 4(b) with a 35-points Berlage 
wavelet, shown in Figure 5(a). This wavelet is mixed phase as 
shown by the plot of its zeros in Figure 5(c). Figure 6 shows a set 
of 35 candidate wavelets obtained after applying the B-ICA with 
the Infomax ICA algorithm [12]. The estimated wavelet, chosen 
from the candidates according to the criterion in Step 5, is shown 
in Figure 5(b). As shown in Figure 5(d), this wavelet is also mixed 
phase. Also, the corresponding estimated reflectivity is shown in 
Figure 4(d).

It can be observed that the wavelet and the reflectivity are 
delayed by some samples when compared to their actual values. 
This uniform delay is unavoidable because the mixtures are 
formed by lagged versions of the convolved signal [1]. As shown in 
Figure 4(c), there is no delay if a linear prediction error filter is 
applied to the convolved signal. However, the result obtained with 
the prediction error filter is more distorted than the one obtained 
with B-ICA. After eliminating the delay of the latter by comparing 
it to the original reflectivity and normalizing the involved signals, 
the MSE is 1.59 × 1023 for the prediction error filter and 1.78 × 
1024 for the B-ICA. This is due to the fact that a mixed-phase 
wavelet is used and the prediction error filter is not suited for this 
case, as discussed previously. 

Let us now consider a scenario in which an entire trace gather 
is deconvolved. B-ICA could be applied for each trace, and the 
results could be collected in a convolved set of deconvolved traces. 
This is a standard procedure on the deconvolution literature. 
However, this is not appropriate in this case, since each decon-
volved trace has a different unknown lag, which destroys the 
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[FIG5] (a) Original wavelet, (b) wavelet estimated by B-ICA, (c) zero-pole plot for the original wavelet, and (d) zero-pole plot for the 
estimated wavelet.
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 lateral coherence on the seismic data. However, since the use of 
B-ICA on a single trace provides a good wavelet estimate, we pro-
pose an additional step for the algorithm.

ADDITIONAL PROPOSED STEP–WIENER FILTERING
The estimated wavelet h|*  of a given trace is used to calculate a 
Wiener filter for a desired spike output with lag greater than or 
equal to zero. The result is used to filter the traces of the gather 
to obtain an estimate of the reflectivity. 

In this additional step, we assume that the difference between 
wavelets that generate neighboring traces is negligible. To test this 
approach, a 70-tap Wiener filter, calculated using the additional 
step, was applied to the trace presented in Figure 4(a). The result 
is shown in Figure 4(e). The observed delay is associated to the 
delay on the estimated wavelet and the fact that the wavelet is 
mixed phase. On the other hand, it was verified that the resulting 
MSE was 5.06 × 1025, better than that obtained by B-ICA alone. 

To test the use of B-ICA followed by Wiener filtering in a gath-
er, the synthetic reflectivity function of Figure 7(a) was generated, 
and then convolved with the Berlage wavelet to simulate a com-
mon shot gather, as shown in Figure 7(b). Figure 7(c) shows the 
deconvolved traces after applying B-ICA combined with the 
Wiener filter. The result almost perfectly recovers the reflectivity 
function.

We now discuss the application of the B-ICA with Wiener filter-
ing to the stacked field data presented in Figure 8(a). This data was 
filtered with a band pass filter from 10 to 60 Hz. The result of 
B-ICA with Wiener filtering is shown in Figure 8(b), where it can 
be observed that B-ICA and Wiener filtering enhances the resolu-
tion of the reflectors in most parts of the seismic section. For 

[FIG6] Set of candidate wavelets.
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[FIG7] (a) Synthetic reflectivity, (b) convolved signals, and (c) 
after using B-ICA and Wiener filter.



IEEE SIGNAL PROCESSING MAGAZINE   [34]   JULY 2012

example, the reflectors located on the interval between 0.9s – 1.1s 
on the original data have better continuity on the deconvolved 
data. Note that the deconvolution introduced a slight delay on the 
traces. As in the case of Figure 4(e), this happens due to delays on 
the estimated wavelet caused by the method and the fact that the 
obtained wavelet is mixed phase. For comparison, the result of 
predictive deconvolution is shown in Figure 8(c). The prediction 
error filter has a lag of 40 ms. It can be observed that B-ICA and 
Wiener filtering performs better in the interval given previously. 
On the amplitude spectrums, we observe that both deconvolution 
methods succeed in flattening the spectrum over the band of the 
input data. It can be observed that B-ICA presents a slightly higher 
content on the higher frequencies.

The results presented in this section illustrate the potential of 
ICA to improve the quality of seismic deconvolution. However, 
many issues must be solved before it becomes a practical proce-
dure. Besides the delay ambiguity problem, elements such as noise 
and wavelet variation in time must be incorporated to new 
 algorithms. This branch of research has given rise to several 
works, like [28] and [29], and may be considered as an open and 
stimulating field.

SUMMARY
This article presented an overview of potential applications of 
unsupervised signal processing in geophysical signals. First, we 
reviewed the main theorems and theoretical aspects of unsuper-
vised signal processing, showing how these techniques can pro-
vide good results in scenarios where methods based on SOS may 
fail. Then, we describe some po tential applications of unsupervised 
techniques to different problems in seismic processing. In particu-
lar, we show the effectiveness of ICA-based seismic deconvolution 

and propose an improvement by combining it with an additional 
Wiener filtering for reflectivity estimation. It is worth pointing out 
that a great number of applications and techniques were not 
described in this article, such as multiple sensors processing, 
 nonlinear predictive deconvolution, and automatic facies classifi-
cation, to name a few. In other words, the application of un -
supervised methods to seismic problems is a flourishing field still 
in its infancy. And certainly new unsupervised methods may be 
proposed in the context of seismic processing. Clearly, this is a 
topic with great potential for cross-fertilization between the signal 
processing and geophysics communities.
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